W(and Z) A_N with fsPHENIX

Initial ideas by

- Brodsky, Hwang Schmidt: Single hadronic spin asymmetries in weak interaction processes, PLB553 (2003)
- Schmidt, Soffer: Transverse single spin asymmetries in gauge boson production, PLB563 (2003)

fsPHENIX working meeting 2/28/2015

Ralf Seidl (RIKEN/RBRC)
All experimental plots + some slides taken from STAR analyzer S.Fazio (BNL)

Physics background

- W/Z A_N has no fragmentation/final state component \rightarrow sensitive to Sivers function
- At small Q_T TMD formalism applicable: $Q >> Q_T >= \Lambda_{OCD}$
- Sensitivity to sign change
- Diluted asymmetries for decay leptons (but maybe still useful for run16/17 BUP?) fsPHENIX workshop, Feb 28,

Kang, Qiu 0903.3629

2015

Physics background

- flavor separated sensitivity especially interesting as $|f_{1T}^{\perp d}| > |f_{1T}^{\perp u}|$ in SIDIS
- Evolution can reduce the asymmetries by factor of 10 or more
- Large uncertainties in sea quark Sivers function

With TMD evolution

Echevarria, et al. 1401.5078

General Strategy for WAN

$$\vec{P}_T^W \approx -\sum_{i \in \frac{tracks}{clusters}} \vec{P}_T^i$$

- Find W→e candidate (~40 GeV electron, missing E_T from neutrino)
- Obtain momentum sum of hadronic final state for recoil
 - Correct for missing particles at high rapidities via MC
 - Momentum balance gives P_T^W and ϕ_W .
- Solve W mass equation for longitudinal W momentum >
 W rapidity

Electron identification

STAR analysis: S.Fazio

MC

• Isolation: ($P^{track}+E^{cluster}$) / $\Sigma[P^{tracks}]$ in R=0.7 cone] > $\mathbb{Q}_{calculate}$ energy from the cluster

Imbalance: no energy in opposite cone (E<20 Get √)
 E_T > 25 GeV
 Track |η| < 1

- |Z-vertex|<100 cm

 Charge separation (avoids charge misidentification) $0.4 < |Charge (TPC) \times E_{T} (EMC) / P_{T} (TPC)| < 1.8$

Signed P_T balance > 18 GeV (rejects QCD Background)

$$ec{P}_T^{bal} = ec{P}_T^{e} + \sum ec{P}_T^{recoil}$$

10

Lepton P

STAR analysis:

Background estimation S.Fazio

Background estimated via MC normalized to data lumi

- Positive-charge signal 1216 events
- $\blacksquare Z \rightarrow ee$
- $W^{+} \rightarrow t V_{t}$

W⁺ sample

$$Z^0$$
 -> ee = 10.71 events [B/S = 0.88%] W^+ -> tv_t = 22.92 events [B/S = 1.88%]

- Negative-charge signal 332 events
- $\blacksquare Z \rightarrow ee$
- $W \rightarrow tV_t$

W sample

$$Z^0 \rightarrow ee = 9.77 \text{ events } [B/S = 2.94\%]$$

$$W \rightarrow tv_t = 4.62$$
 events 1.39%]

STAR analysis:

QCD background estimation S.Fazio

Data-driven QCD background estimation

- Reverse of P_T-balance cut [PT-balance < 15 GeV] → Selects QCD events
- Plot lepton-P_T > 15 GeV
- QCD sample <u>normalized to the first P_T-bin [15-19 GeV]</u>

W⁺ sample

QCD = 19.37 events

[B/S = 1.59%]

COMMENTS:

- Backgrounds under control!
- Z -> e⁺ e⁻ expected to have a comparable asymmetry

SIKEN

We calculate the recoil summing up all tracks and trackless electromagnetic clusters

- Matching track is a track which extends to the BEMC and matches a firing tower (< 7 cm)
- Trackless tower is a firing tower in the BEMC with no matching tracks and Energy > 200 MeV

Recoil is calculated summing the momenta of all tracks which do not belong to the electron

candidate + all firing trackless towers

$$\checkmark$$
In transverse plane: $\vec{P}_T^W = \vec{P}_T^e + \vec{P}_T^{\nu} = -\vec{P}_T^{recoil}$

✓ Recoil reconstructed using tracks and towers:

✓ Part of the recoil not within STAR acceptance → MC correction applied fsPHENIX workshop, Feb 28,

Monte Carlo correction

STAR analysis: S.Fazio

$$k_{i} = \frac{P_{T,i}^{W}(true)}{P_{T,i}^{Recoil}(reconstructed)}$$

The Correction method –

- ✓ Read recoil P_T bin from data
- ✓ Project correction factor for corresponding P_T-bins
- ✓ Normalize the projection distribution to 1
- ✓ Pick a correction value sampled from the

MC test:

After MC correction

→ very good agreement with RhicBOS and PYTHIA predictions

P_T correction

- Very strongly depends on the overall coverage
 - higher P_Ts: Little correction (much activity in central detectors)
 - Low P_T means recoil in beam pipe
- STAR: -1 to 2 coverage
 - Very large uncertainty/correction for lowest P_Ts
- fsPHENIX should have less correction at low P_T

$WP_T - Data/MC$

We add to our selection:

- Track-P_T in the recoil > 0.2 GeV
- Total recoil-P_T > 0.5 GeV

GOOD data/MC agreement after P_T correction

W P_z reconstruction

✓ W longitudinal momentum (along z) can be calculated from the invariant mass. Currently we assume constant M_W (for W produced on shell)

$$M_W^2 = \left(E_e + E_n\right)^2 - \left(\vec{p}_e + \vec{p}_n\right)^2$$

✓ Neutrino longitudinal momentum component from quadratic equation

$$\left|\vec{p}_{T}^{e}\right|^{2}\left(p_{z}^{n}\right)^{2}-2Ap_{z}^{e}p_{z}^{n}+\left|\vec{p}_{T}^{n}\right|^{2}\left|\vec{p}^{e}\right|^{2}-A^{2}=0, \quad where \quad A=\frac{M_{W}^{2}}{2}+\vec{P}_{T}^{e}\times\vec{P}_{T}^{n}$$

√ Two solutions!

Smaller |Pz| → first solution Larger |Pz| → other solution

BOTH the first and the other solution can have misreconstructed events!

FIRST SOLUTION for Pz

STAR analysis: S.Fazio

We select the first solution → better Fraction of correctly reconstructed events

|P_L| < 50 GeV → < 40 % misreconstructions

How do we estimate the fraction?

Answer: we take the # events

where Pz is reconstructed within +/
30 GeV

NOTE: We <u>only</u> use the <u>first solution</u>. This can be improved at a later stage.

We cut at |Pz| < 50 GeV → |W-y| < 0.6 to minimize misreconstructions

STAR analysis: S Fazio

MC challenge - systematics S.Fazio

- Tables (W rapidity-P_T bins) for A_N prediction with evolution given by Z-B Kang [arXiv:1401.5078]
- ➤ Use PYTHIA MC prediction for W⁻ (the A_N prediction is always positive)
- Assign each prediction value from the tables according to the generated values of W-rapidity and P_T
- After the event is fully reconstructed we look at the P_T distributions of A_N

- > We fit a Gaussian distribution and compare the means
- We rely on the fact that the input asymmetry has the same dependence as The same is done for W-P_T

fsPHENIX workshop, Feb 28, 2015

RIKEN

W Asymmetry

- ✓ First we calculate the asymmetries for each beam separately
- ✓ Then we combine the two asymmetries
- ✓ We fit sin(φ) modulation with phase = π/2
- ✓ Average RHIC polarization for 2011 transverse p-p data → P = 53%

We use the "square root formula" to cancel dependencies on geometry and luminosity

Asymmetries measured:

- Signal sample asymmetry
- In backup slides:
- Geometrical effects asymmetry
- Luminosity effects asymmetry

$$A_N \approx \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

$$A_N \approx \frac{1}{P} \frac{\sqrt{N_R^{\ \uparrow} N_L^{\ \downarrow}} - \sqrt{N_L^{\ \uparrow} N_R^{\ \downarrow}}}{\sqrt{N_R^{\ \uparrow} N_L^{\ \downarrow}} + \sqrt{N_L^{\ \uparrow} N_R^{\ \downarrow}}}$$

STAR results

STAR results

Open questions

- Can sPHENIX properly reconstruct 40 GeV electrons?
 - Charge id still possible?
- Do multiple collisions interfere with recoil reconstruction?
- How well can fsPHENIX reconstruct the recoil?
 - Dependence on acceptance
 - Dependence on detector hardware
- Closely related ePHENIX CC DIS (ep $\rightarrow vX$)

Work needed

- Electron reconstruction:
 - Pythia W simulation \rightarrow (f)sPHENIX sim \rightarrow reco
- Recoil:
 - Acceptance dep: Pythia 9W simulation
 - Detector dep: realistic fsPHENIX sim
 - Pileup → merge multiple MB events with signal?
- Background:
 - W→tau MC, default MinBias →fsPHENIX sim
- CC DIS:
 - CC + diffractive Pythia →ePHENIX sim

